

The MicroCarb Project: recent achievements and Review of the project status

IWGGMS-15 Sapporo 3-5 June 2019

Francois BUISSON - MicroCarb project manager.

MicroCarb Mission

- Scientific mission,
- Measurement of O2 atmospheric concentration
- On ground resolution
 - ◆ 3 simultaneous samples 4.5 x 9 km (@nadir)
 - ◆ Exploratory mode: imaging with higher resolution 2x2 km² over limited area (40x40 km²)
- Compact instrument . Compatible with microsatellite <200kg

Orbit

◆ SSO - 649 km - 13h30 LTAN

◆ Cycle: 25 days - 7 days sub-cycle

Operations

◆ Launch: 2021

◆ Life time: 5 years

Launch:

→ as an auxiliary payload (Ariane, Vega)

Spectral Performances	B1 (O ₂)	B4 (O ₂)	B2(CO ₂)	B3(CO ₂)
Central Wavelength (nm)	763.5	1273.4	1607.9	2037.1
Bandwidth (nm)	10.5	17.6	22.1	28,1
Mean Spectral resolution (λ/Δλ)	25 500	25 900	25 800	25 900
SNR @ Lmean (per channel)	285	378	344	177

MicroCarb, part of the GHG international constellation for 2021-26 period

- Launch 2021 is important
- We expect
- to be in flight with OCO-2 for cross calibration/ validation
- coordinated operations with OCO-3 and GoSat-2
- Play a part in preparation of global stocktake 2023/2028
- Contribute to preparation of future CO2M (Copernicus)
- Ready to develop collaboration with other agencies to prepare cross-calibration & cross validation (cf. MAGIC), and support scientific exchange

Organization

System design and development Satellite design an development Instrument specification Processing definition Mission performances Calibration and validation Operations

Instrument development qualification and calibration

Satellite Assembly integration and Test

Progress

Phase C (detailed design) successfully completed

- Instrument CDR completed (fall 2018)
- Satellite CDR completed (April 2019)

Now conducting phase D (flight model realization)

- Most of the FM equipment available
- Instrument AIT to be started in the coming weeks
- Platform AIT to be started in the coming weeks

Ground segment

Wide re use of existing CNES means and facilities:

Processing

- Specific retrieval tool developped 4A RTIC: includes specific solar radiation model, spectroscopy data base, etc
- Performance evaluation being conducted using OCO-2 data
- Industrial development to be started in the coming weeks

On line with launch 2nd half of 2021

Multiple Observation modes

Routine mode

- Nadir, off-nadir (lateral depointing)
- Glint
- Target,
- Scan
- WFOV/IFOV= 15

Calibration mode

- Sun pointing
- Moon pointing
- Night pointing over oceans
- Earth limb pointing

Observation modes

Exploratory mode: City mode

- Typical footprint: 2x2 km
- Typical area surface: 40x40 km²
- Obtained by slowing down the satellite scrolling + maneuvers + scan activation + binning tuning (on ground) + integration time tuning
- No data acquisition before / after (satellite maneuver)

See dedicated presentations (session 4)

- > "The potential of the XCO2 high resolution imagery ..." Gregoire Broquet
- Plume detection and characterization from XCO2 imagery ... " Claude Camy-Peyret

Also applicable at regional scale

40 km

Instrument

Description

- Passive SWIR Spectrometer
- Integrated imager (cloud detection):0.625 μm

Features

- One unique spectrometer (one grating, one detector)
- On board scan mirror (one axis)
- Passive cooling (150 K)
- Calibration: Solar port with diffuser, White lamps
- Polarization scrambler
- Capacity for intermediate acquisition (10 Hz) =>mitigation of non uniformity of scenes ALT effects (ISRF distortion)
- No processing aboard
- High stability (geometrical, radiometric and spectral): use of SiC material, accurate thermal control (< 0.1 K), electronics</p>

Parameter	Value
Mass	72 kg
Power	< 57 W
Data rate	500 Gbits/day

90 cm

Instrument development status

Assembly and Integration to be started end of June 2019

- Followed by environmental testing
- Then full calibration
- Delivery expected June 2020
- Carried out by Airbus DS Toulouse

Instrument calibration. On Ground

Tests performed under thermal vacuum condition

Optical devices

- Tunable laser source,
- Wide band source
- Integrating sphere,
- Collimator,
- Polarizer

Other tests

- Gas cell => characterization in absorption
- Test with heliostat
 - ◆ Different air masses
 - ◆ Matador

- Dark signal: offset and stability
- Non linearity
- Absolute and relative gain
- Verification straylight model
- Verification polarization model

Spectral performances

- Dispersion law parameters
- Keystone
- ISRF Shape

Spatial performances

- Acquisition in the 4 bands
- Comparison with EM27
- Detection of defects at instrument or L1 or L2 level

Cross calibration With GoSat TANSO (common radiometer): under investigation)

S Band X Band

Antenna

- Total Mass: 178 kg
- Mean Power: 100 W

Myriade class micro satellite

- Enhanced Myriade family
 - Computer
 - LOS
 - AOCS (gyroless)
 - New SST, TMTC, TMHD
- Flight proven: used for 19 satellites
- Dimensions 80 x 100 x 110 cm
- High rate telemetry: 156 Mbits/s
- On board Data storage: 800 Gbits
- Hydrazine propulsion : 55 m/s
- Steerable solar generator

11/06/2019 Cnes

Satellite AIT

- Followed by payload integration
- Then environmental testing
- Delivery expected June 2021
- Carried out by **Thales Alenia** Space (UK)

In orbit calibration and validation

Instrument calibration

- Closed shutter
- Dark signal: offset and stability
- White lamp
- relative radiometric gain
- **Keystone**
- **Sun Pointing**Absolute radiometric gain
- Reference solar spectrum Dispersion law parameters
- Moon pointing
- Co registration, etc
- Vicarious campaign
- Ground laser pointing

Data validation

- The following is considered
 - Comparison to TCCON station (+ EM 27)
 - Aircore (balloon flight)
 - Instrument in Aircrafts
 - Comparison to models
 - Cross validation with other projects (OCO, GoSat, Tansat, etc)

Data processing

See coming Denis Jouglet presentation for details

Processing tools under development

- Radiative transfer : 4A-OP (by LMD)
- Inversion algorithm: 4A RTIC (optimal estimation)
- Implementation of B4 on -going
- Spectroscopy data base: based on improved existing GEISA + addition of O2 @1. 27 μ
- Solar model: based on
 - SOLSPEC (by LATMOS) for the continuum
 - And Toon for absorption lines
- Scattering modelization. VLIDORT, SOS

Other products

> SIF, airglow

Validation

- Processing applied to OCO-2 L1 data and comparison to OCO-2 L2
- > Step 1: clear sky, nadir: completed
- Step 2: comparison to TCCON, scenes with aerosol, estimation of SIF, glint mode: on – going
- Results now close to those obtained by ACOS

Data latency

Products will be available within 48 hours in compliance with CAMS (Copernicus) requirements

Conclusion

- * Additional partnership are put in place at European level to place MicroCarb in an European frame and contribute to prepare future operational systems (Copernicus)
- Instrument and satellite AIT to be started soon.
- Processors benchmarked and extensively tested using OCO-2 data and give promising results
- MicroCarb is in time and heading for a launch in 2021

Thank you for your attention!